Electronic Ceramics Analysis - Scanning Electron Microscopy (SEM) Applications
Ceramic materials have a series of characteristics such as high melting point, high hardness, high wear resistance, and oxidation resistance, and are widely used in various fields of national economy such as the electronics industry, automotive industry, textile, chemical industry, and aerospace. The physical properties of ceramic materials depend largely on their microstructure, which is an important application area of SEM.
What are ceramics?
Ceramic materials are a class of inorganic non-metallic materials made of natural or synthetic compounds through forming and high-temperature sintering and can be divided into general ceramic materials and special ceramic materials.
Special ceramic materials can be classified according to chemical composition: oxide ceramics, nitride ceramics, carbide ceramics, boride ceramics, silicide ceramics, etc.; according to their characteristics and applications can be divided into structural ceramics and functional ceramics.
Figure 1 Microscopic morphology of boron nitride ceramics
SEM helps to study the properties of ceramic materials
With the continuous development of society and science and technology, people's requirements for materials have been increasing, which requires a deeper understanding of the various physical and chemical properties of ceramics. The physical properties of ceramic materials are largely dependent on their microstructure [1], and SEM images are widely used in ceramic materials and other research fields because of their high resolution, wide adjustable magnification range, and stereoscopic imaging. The CIQTEK Field Emission Scanning Electron Microscope SEM5000 can be used to observe the microstructure of ceramic materials and related products easily, and in addition, the X-ray energy spectrometer can be used to determine the elemental composition of materials quickly.
Application of SEM in the Study of Electronic Ceramics
The largest end-use market of the special ceramics industry is the electronics industry, where barium titanate (BaTiO3) is widely used in multilayer ceramic capacitors (MLCC), thermistors (PTC), and other electronic components because of its high dielectric constant, excellent ferroelectric and piezoelectric properties, and voltage resistance and insulation properties [2]. With the rapid development of the electronic information industry, the demand for barium titanate is increasing, and the electronic components are becoming smaller and more miniaturized, which also puts forward higher requirements for barium titanate.
Researchers often regulate the properties by changing the sintering temperature, atmosphere, doping, and other preparation processes. Still, the essence is that the changes in the preparation process cause changes in the microstructure of the material and thus the properties. Studies have shown that the dielectric ferroelectric properties of barium titanate are closely related to the material's microstructure, such as porosity and grain size [3]. The particle morphology, particle size uniformity, and grain size of barium titanate ceramic powders can be characterized by field emission scanning electron microscopy SEM5000 as shown in Figure 2.
The results of microstructure characterization are important guides for the selection of sintering methods as well as process parameters. In addition, the study of the microstructure of materials by SEM helps to understand the relationship between microstructure and properties.
Figure 2 Microscopic morphology of barium titanate ceramic powder
Strontium barium titanate (BaxSr1-xTiO3) is also an important electronic ceramic material, which is a solid solution formed by strontium titanate and barium titanate. Compared with barium titanate, it has a higher dielectric constant, lower dielectric loss, higher breakdown strength, and adjustable phase transition point with composition, and has been widely studied and used in electronic devices by a large number of scholars. [4] Currently, researchers often use methods such as adjusting the Sr/Ba ratio and doping elements to achieve improved performance. However, it is still fundamental to modulate the material properties by changing the microstructure of the material. Figure 3 shows the backscattered electron image of the sintered barium strontium titanate tested by field emission scanning electron microscope SEM5000, which can be used to characterize the compositional homogeneity of the material at low magnification, while the backscattered electron image at high magnification also has a certain morphological lining.
Figure 3 Microscopic morphology of barium strontium titanate sintered products
Ceramic materials, metallic materials, and polymer materials are the three most widely used materials in today's society. With the continuous development of science and technology and the social economy, the future will put forward more demanding requirements on the performance of ceramic materials. The use of SEM to characterize the microstructure of ceramic materials will help to improve the preparation technology of ceramic materials toward higher performance.
CIQTEK Field Emission Scanning Electron Microscope SEM5000
SEM5000 is a high-resolution, feature-rich field emission scanning electron microscope, with advanced barrel design, in-barrel deceleration, and low aberration non-leakage magnetic objective design, to achieve low-voltage high-resolution imaging, that can be applied to magnetic samples. SEM5000 has optical navigation, perfect automatic functions, well-designed human-machine interaction, optimized operation, and use process. Regardless of whether the operator has extensive experience, you can quickly get started with the task of high-resolution photography.
Analytical field emission scanning electron microscope (FESEM) equipped with a high-brightness long-life Schottky field emission electron gun With the three-stage condenser electron optics column design for beam currents up to 200 nA, SEM4000Pro delivers advantages in EDS, EBSD, WDS, and other analytical applications. The system supports low vacuum mode as well as a high-performance low-vacuum secondary electron detector and retractable backscattered electron detector, which can help directly observe poorly conductive or even non-conductive samples. Standard optical navigation mode and an intuitive user operation interface make your analysis work easy.
Learn MoreCIQTEK SEM5000 is a field emission scanning electron microscope(FESEM) with high-resolution imaging and analysis ability, supported by abundant functions, benefits from advanced electron optics column design, with high-pressure electron beam tunnel technology (SuperTunnel), low aberration, and non-immersion objective lens, achieves low voltage high-resolution imaging, the magnetic specimen can also be analyzed. With optical navigation, automated functionalities, carefully designed human-computer interaction user interface, and optimized operation and use process, no matter if you are an expert or not, you can quickly get started and complete high-resolution imaging and analysis work.
Learn MoreCIQTEK SEM4000 is an analytical field emission scanning electron microscope (FESEM) equipped with a high-brightness long-life Schottky field emission electron gun. With the three-stage condenser electron optics column design and the large continuously adjustable beam current, SEM4000 delivers advantages in EDS, EBSD, WDS, and other analytical applications. The system supports low vacuum mode, which can help directly observe poorly conductive or even non-conductive specimens. Standard optical navigation mode, as well as an intuitive user operation interface, makes your analysis work easy.
Learn MoreField Emission Scanning Electron Microscope (FE-SEM) with Focused Ion Beam (FIB) Columns The CIQTEK DB550 Focused Ion Beam Scanning Electron Microscope (FIB-SEM) has a focused ion beam column for nano-analysis and specimen preparation. It utilizes “super tunnel” electron optics technology, low aberration and non-magnetic objective design, and has the “low voltage, high resolution” feature to ensure its nanoscale analytical capabilities. The ion columns facilitate a Ga+ liquid metal ion source with highly stable and high quality ion beams to ensure nanofabrication capabilities. The DB550 is an all-in-one nano-analysis and fabrication workstation with an integrated nano-manipulator, gas injection system, and user-friendly GUI software.
Learn MoreUltra-high Resolution Field Emission Scanning Electron Microscopy (FESEM): 0.6 nm@15 kV and 1.0 nm@1 kV The CIQTEK SEM5000X ultra-high resolution FESEM utilizes the upgraded column engineering process, “SuperTunnel” technology, and high-resolution objective lens design to improve low-voltage imaging resolution. The FESEM SEM5000X specimen chamber ports extend to 16, and the specimen exchange load-lock supports up to 8-inch wafer size (maximum diameter 208 mm), significantly expanding the applications. The advanced scanning modes and enhanced automated functions bring stronger performance and an even more optimized experience.
Learn MoreCIQTEK SEM5000Pro is a field emission scanning electron microscope (FESEM) with high-resolution imaging and analysis ability, supported by abundant functions, benefits from advanced electron optics column design, with high-pressure electron beam tunnel technology (SuperTunnel), low aberration, and MFL objective lens, achieves low voltage high-resolution imaging, the magnetic specimen can also be analyzed. With optical navigation, automated functionalities, carefully designed human-computer interaction user interface, and optimized operation and use process, no matter if you are an expert or not, you can quickly get started and complete high-resolution imaging and analysis work.
Learn MoreHigh-speed scanning electron microscope for cross-scale imaging of large-volume specimens CIQTEK HEM6000 facilities technologies such as the high-brightness large-beam current electron gun, high-speed electron beam deflection system, high-voltage sample stage deceleration, dynamic optical axis, and immersion electromagnetic & electrostatic combo objective lens to achieve high-speed image acquisition whilst ensuring nano-scale resolution. The automated operation process is designed for applications such as a more efficient and smarter large-area high-resolution imaging workflow. The imaging speed can reach more than 5 times faster than a conventional field emission scanning electron microscope (fesem).
Learn MoreHigh-performance and Universal Tungsten Filament SEM Microscope The CIQTEK SEM3200 SEM Microscope is an excellent general-purpose Tungsten Filament Scanning Electron Microscope (SEM) with outstanding overall capabilities. Its unique Dual-anode electron gun structure ensures high resolution and improves image signal-to-noise ratio at low excitation voltages. Furthermore, it offers a wide range of optional accessories, making the SEM3200 a versatile analytical instrument with excellent expendabilities.
Learn MoreNext-generation Tungsten Filament Scanning Electron Microscope The CIQTEK SEM3300 scanning electron microscope (SEM) incorporates technologies such as "Super-Tunnel" electron optics, inlens electron detectors, and electrostatic & electromagnetic compound objective lens. By applying these technologies into the tungsten filament microscope, the long-standing resolution limit of such SEM is surpassed, enabling the tungsten filament SEM to perform low-voltage analysis tasks previously only achievable with field emission SEMs.
Learn More