What is Focused Ion Beam (FIB)?
Focused Ion Beam (FIB) technology has become an essential part of modern technological advancements, particularly in semiconductor manufacturing and nanofabrication. While FIB technology is well-known, its history and development are not widely known. Focused Ion Beam (FIB) is a micro-cutting instrument that uses electromagnetic lenses to focus an ion beam into a very small area. FIB involves accelerating ions from an ion source (most FIBs use Ga, but some devices have He and Ne ion sources) and then focusing the beam onto the surface of the sample. CIQTEK DB550 Focused Ion Beam Scanning Electron Microscope (FIB-SEM) Origin of FIB Technology Since the 20th century, nanotechnology has rapidly developed as an emerging field in science and technology. Currently, nanotechnology represents one of the forefront areas of scientific and technological advancement and has significant implications for economic and social development as a national strategy. Nanostructures have unique properties due to their structural units approaching the coherence length of electrons and the wavelength of light, leading to surface and interfacial effects, size effects, and quantum size effects. They exhibit many novel characteristics in electronics, magnetism, optics, and mechanics, and hold enormous potential in high-performance device applications. The development of novel nanoscale structures and devices requires the advancement of precise, multidimensional, and stable micro-nanofabrication techniques. Micro-nanofabrication processes are extensive and commonly involve techniques such as ion implantation, photolithography, etching, and thin film deposition. In recent years, with the trend of miniaturization in modern manufacturing processes, Focused Ion Beam (FIB) technology has increasingly been applied in fabricating micro-nano structures in various fields, becoming an indispensable and important technique in micro-nanofabrication. FIB technology is developed based on conventional ion beam and focused electron beam systems and is essentially the same. Compared to electron beams, FIB scans the sample surface using an ion beam generated by an ion source after acceleration and focusing. Since ions have much greater mass than electrons, even the lightest ions, such as H+ ions, are more than 1800 times the mass of electrons. This enables the ion beam to not only achieve imaging and exposure capabilities similar to electron beams but also utilize the ion's heavy mass to sputter atoms from solid surfaces, making it a direct processing tool. FIB can also induce atoms to deposit onto the sample material surface by combining with chemical gases. Therefore, FIB is a widely applicable tool in micro-nanofabrication. Development of Ion Sources In the development of FIB technology, the advancement of high-brightness ion sources has been crucial. Early gas ion sources and Liquid Metal Ion Sources (LMIS) laid the foundation for FIB technology. In ...