CIQTEK Launches In-situ Heating Chip Solution for High-Precision Analysis
CIQTEK Launches In-situ Heating Chip Solution for High-Precision Analysis
September 24, 2025
In the fields of high-temperature material performance research and phase transition mechanism analysis, traditional external heating methods often fail to combine precise micro-region temperature control with real-time observation.
CIQTEK, in collaboration with the Micro-Nano Center of the University of Science and Technology of China, has developed an innovative in-situ heating chip solution. By integrating MEMS heating chips with dual-beam electron microscopes, this solution enables precise temperature control (from room temperature to 1100°C) and micro-dynamic analysis of samples, offering a new tool for studying material behavior in high-temperature environments.
This solution usesthe CIQTEK dual-beam SEM and specialized MEMS heating chips, with temperature control accuracy better than 0.1°C and temperature resolution better than 0.1°C. The system also features excellent temperature uniformity and low infrared radiation, ensuring stable analysis at high temperatures. The system supports various characterization techniques during heating, including micro-region morphology observation, EBSD crystal orientation analysis, and EDS composition analysis. This allows for a comprehensive understanding of phase transitions, stress evolution, and composition migration under thermal effects.
The system operates without breaking the vacuum, fulfilling the full process requirements for sample preparation and characterization (in-situ micro-region EBSD).
The integrated workflow design covers the entire process, from sample preparation (ion beam processing, nano-manipulator extraction) to in-situ welding and heating tests. The system supports multi-angle operation, featuring a 45° heating chip and a 36° copper grid position, which meet the complex experimental needs. The system has been successfully applied in high-temperature performance research of alloys, ceramics, and semiconductors, helping users gain deeper insights into material responses in real-world environments.
September 26–30, Wuhan | 2025 Chinese National Conference on Electron Microscopy CIQTEK's eight major electron microscopy solutions will be showcased!
Ultra-High Resolution Field Emission Scanning Electron Microscopy (FESEM) The CIQTEK SEM5000X is an ultra-high resolution FESEM with optimized electron optics column design, reducing overall aberrations by 30%, achieving ultra-high resolution of 0.6 nm@15 kV and 1.0 nm@1 kV. Its high resolution and stability make it advantageous in advanced nano-structural materials research, as well as the development and manufacturing of high-technology node semiconductor IC chips.
Ga+ Focused Ion Beam Field Emission Scanning Electron Microscope The CIQTEK DB550 Focused Ion Beam Scanning Electron Microscope (FIB-SEM) has a focused ion beam column for nano-analysis and specimen preparation. It utilizes “super tunnel” electron optics technology, low aberration, and non-magnetic objective design, and has the “low voltage, high resolution” feature to ensure its nanoscale analytical capabilities. The ion columns facilitate a Ga+ liquid metal ion source with highly stable and high-quality ion beams to ensure nanofabrication capabilities. The DB550 is an all-in-one nano-analysis and fabrication workstation with an integrated nano-manipulator, gas injection system, and user-friendly GUI software.
Ultra High-Resolution Tungsten Filament Scanning Electron Microscope The CIQTEK SEM3300 Scanning Electron Microscope (SEM) incorporates technologies such as "Super-Tunnel" electron optics, inlens electron detectors, and electrostatic & electromagnetic compound objective lens. By applying these technologies to the tungsten filament microscope, the long-standing resolution limit of such SEM is surpassed, enabling the tungsten filament SEM to perform low-voltage analysis tasks previously only achievable with field emission SEMs.