The electron paramagnetic resonance (EPR or ESR) technique is the only method available for directly detecting unpaired electrons in samples. Among them, the quantitative EPR (ESR) method can provide the number of unpaired electron spins in a sample, which is essential in studying the reaction kinetics, explaining the reaction mechanism and commercial applications. Therefore, obtaining the unpaired electron spin numbers of samples by electron paramagnetic resonance techniques has been a hot topic of research.
Two main quantitative electron paramagnetic resonance methods are available: relative quantitative EPR (ESR) and absolute quantitative EPR (ESR).
Relative Quantitative EPR (ESR) Method
The relative quantitative EPR method is accomplished by comparing the integrated area of the EPR absorption spectrum of an unknown sample with the integrated area of the EPR absorption spectrum of a standard sample. Therefore, in the relative quantitative EPR method, a standard sample with a known number of spins needs to be introduced.
The size of the integrated area of the EPR absorption spectrum is not only related to the number of unpaired electron spins in the sample, but also to the settings of the experimental parameters, the dielectric constant of the sample, the size and shape of the sample, and the position of the sample in the resonant cavity. Therefore, to obtain more accurate quantitative results in the relative quantitative EPR method, the standard sample and the unknown sample need to be similar in nature, similar in shape and size, and in the same position in the resonant cavity.
Quantitative EPR Error Sources
Absolute Quantitative EPR (ESR) Method
The absolute quantitative EPR method means that the number of unpaired electron spins in a sample can be obtained directly by EPR testing without using a standard sample.
In absolute quantitative EPR experiments, to obtain the number of unpaired electron spins in a sample directly, the value of the quadratic integral area of the EPR spectrum (usually the first-order differential spectrum) of the sample to be tested, the experimental parameters, the sample volume, the resonance cavity distribution function and the correction factor are needed. The absolute number of unpaired electron spins in the sample can be directly obtained by first obtaining the EPR spectrum of the sample through the EPR test, then processing the EPR first-order differential spectrum to obtain the second-integrated area value, and then combining the experimental parameters, sample volume, resonant cavity distribution function and correction factor.
CIQTEK Electron Paramagnetic Resonance Spectroscopy
The absolute quantification of unpaired electron spins of the CIQTEK EPR (ESR) spectroscopy can be used to obtain the spin number of unpaired electrons in a sample directly without the use of a reference or standard sample. The resonant cavity distribution function and correction factor are set before the instrument is shipped. After the spectroscopy is completed, the user only needs to enter the relevant parameters in the software to obtain the spin number of unpaired electrons in the sample directly. The user input parameters include: sample diameter, sample length, electron spin quantum number, test temperature, secondary integration area and the distance from the sample center to the top sample release clip position. This function allows the user to easily and quickly obtain the number of unpaired electron spins in the test sample.
CIQTEK Absolute Quantitative EPR (ESR) Function Interface
The CIQTEK EPR (ESR) spectroscopy provides a non-destructive analytical method for the direct detection of paramagnetic materials. It can study the composition, structure, and dynamics of magnetic molecules, transition metal ions, rare earth ions, ion clusters, doped materials, defective materials, free radicals, metalloproteins, and other substances containing unpaired electrons, and can provide in situ and non-destructive information on the microscopic scale of electron spins, orbitals, and nuclei. It has a wide range of applications in the fields of physics, chemistry, biology, materials, industry, etc.
X-Band Benchtop Electron Paramagnetic Resonance Spectrometer The CIQTEK EPR200M is a newly designed benchtop EPR spectrometer specializing in the qualitative and quantitative analysis of free radicals, transition metal ions, material doping and defects. It is an excellent research tool for real-time monitoring of chemical reactions, in-depth evaluation of material properties, and exploration of pollutant degradation mechanisms in environmental science. The EPR200M adopts a compact design and highly integrates the microwave source, magnetic field, probe, and main controller, ensuring sensitivity and stability while being compatible with diverse experimental needs. The user-friendly interface allows even first-time users to start quickly, making the EPR instrument truly easy to use. ★ Email our experts for custom solutions, quotes, or detailed brochures: info@ciqtek.com
Learn MoreThe CIQTEK EPR200-Plus is a floor-standing EPR spectrometer with enhanced sensitivity for robust continuous wave (CW) EPR measurements. The model can be customized with three different sizes of electromagnets. An upgraded version, CIQTEK EPR300, is another floor-standing CW EPR spectroscopy with higher sensitivity and optional Q-band extension. >> EPR200-Plus Accessories: Dual Mode Resonator, High-temperature System, Liquid Nitrogen Variable Temperature With Cryostat, Liquid helium Variable Temperature, Liquid Helium-free Dry Cryogenic System, Time-resolved EPR System, Goniometers, Irradiation system, Flat cell. Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a powerful analytical method to study the structure, dynamics, and spatial distribution of unpaired electronics in paramagnetic substances. It can provide in-situ and non-destructive information on electron spins, orbitals, and nuclei at the microscopic scale. EPR spectroscopy is particularly useful for studying metal complexes or free radicals so it has important applications in the fields of chemistry, materials, physics, environment, etc.
Learn MoreCIQTEK X-band pulse electron paramagnetic resonance (EPR or ESR) spectrometer EPR100 supports both continuous-wave EPR and pulse EPR functions. In addition to supporting conventional continuous-wave EPR experiments, the EPR100 can also finely control and measure electron spin quantum states using specific pulse sequences. This enables pulse EPR tests such as T1, T2, ESEEM (electron spin echo envelope modulation), HYSCORE (hyperfine sublevel correlation), etc. The EPR100 instrument offers a comprehensive range of optional accessories, such as ENDOR, DEER, TR-EPR, and AWG modules, which fully meet the requirements of all current pulsed EPR experimental modes. When paired with a variable temperature system, it enables the detection of paramagnetic substances at ultralow temperatures. Pulsed EPR spectroscopy provides higher spectral resolution, revealing the hyperfine interactions between electrons and nuclei and delivering more detailed structural information. This capability is irreplaceable and crucial in scientific research areas such as materials science, biomolecular structure analysis, etc.
Learn MoreHigh-Frequency & High-Field Pulse Electron Paramagnetic Resonance (EPR) at W-Band(94 GHz) High-frequency EPR technology offers numerous advantages, such as high g-value resolution and minimal sample volume. It is highly applicable in biology, chemistry, and materials science. CIQTEK EPR-W900 supports both continuous-wave and pulsed EPR measurement, including ENDOR, and enables variable temperature experiments from 4 to 300 K. It is equipped with a split-pair superconducting magnet, with a maximum magnetic field of up to 6 T. The superconducting magnet, combined with a cryogen‐free cryogenic system, stabilizes the temperature in the superconducting region without consuming liquid helium, ensuring stable operation and easy maintenance. The EPR software platform is the same as the CIQTEK X-band pulsed spectrometer, making it simple and user-friendly.
Learn MoreModernize and upgrade your old EPR spectroscopy for cutting-edge EPR research This Modernization will bring you features including: ▶ Higher Sensitivity: Ultra-low noise microwave source and signal detection technology ▶ Better Resolution: Precise magnetic field control technology ▶ Excellent Compatibility: Compatible with a wide range of EPR spectrometers ▶ Fast Delivery: Complete delivery of the modernized hardware within 2-6 months ▶ High-quality Service: On-site installation and 2-year warranty ★ Email us for more details: info@ciqtek.com
Learn MoreThe CIQTEK EPR300 Electron Paramagnetic Resonance (EPR) Spectrometer incorporates the latest microwave technology and an ultra-high-performance signal processing unit, significantly enhancing detection sensitivity and signal-to-noise ratio to an unprecedented level. It enables precise detection and analysis of unpaired electron signals even at extremely low spin concentrations, providing a novel approach for exploring microscopic physical and chemical properties of low-concentration substances such as free radicals and metal ions. Additionally, the EPR300 supports easy upgrades from X Band to Q Band, achieving higher g-value resolution, which is advantageous for detecting anisotropic samples. The EPR300 establishes a solid experimental foundation for cutting-edge research in life sciences, materials science, chemistry, and physics, driving scientific discoveries to new milestones.
Learn More