Electron Paramagnetic Resonance (EPR) technology offers solutions for water treatment research
The main pollutants in water bodies include pharmaceuticals, surfactants, personal care products, synthetic dyes, pesticides, and industrial chemicals. These pollutants are challenging to remove and can adversely affect human health, including the nervous, developmental, and reproductive systems. Therefore, protecting water environments is of utmost importance. In recent years, advanced oxidation processes (AOPs) such as Fenton-like reactions, persulfate activation, and UV-light-induced AOPs (e.g., UV/Cl2, UV/NH2Cl, UV/H2O2, UV/PS) as well as photocatalysts (e.g., bismuth vanadate (BiVO4), bismuth tungstate (Bi2WO6), carbon nitride (C3N4), titanium dioxide (TiO2) have gained attention in the field of water treatment and environmental remediation. These systems can generate highly reactive species such as hydroxyl radicals (•OH), sulfate radicals (•SO4-), superoxide radicals (•O2-), singlet oxygen (1O2), etc. These techniques significantly enhance the removal rates of organic pollutants compared to conventional physical and biological methods. The development of these water treatment technologies greatly benefits from the assistance of Electron Paramagnetic Resonance (EPR) technology. CIQTEK offers the desktop Electron Paramagnetic Resonance spectrometer EPR200M and the X-band continuous-wave Electron Paramagnetic Resonance spectrometer EPR200-Plus, which provide solutions for studying photocatalysis and advanced oxidation processes in water treatment. Application Solutions of Electron Paramagnetic Resonance (EPR) technology in water treatment research - Detect, identify, and quantify reactive species such as •OH, •SO4-, •O2-, 1O2, and other active species generated in photocatalytic and AOPs systems. - Detect and quantify vacancies/defects in remediation materials, such as oxygen vacancies, nitrogen vacancies, sulfur vacancies, etc. - Detect doped transition metals in catalytic materials. - Verify the feasibility and assist in optimizing various parameters of water treatment processes. - Detect and determine the proportion of reactive species during water treatment processes, providing direct evidence for pollutant degradation mechanisms. Application Cases of Electron Paramagnetic Resonance (EPR) technology in water treatment research Case 1: EPR in UV/ClO2-based advanced oxidation technology - EPR study of the degradation process of fluoroquinolone antibiotics in a UV-mediated AOPs system. - Degradation of pharmaceuticals and personal care products (PPCPs) in water by chlorine dioxide under UV conditions. - EPR detection and qualitative analysis of •OH and singlet oxygen as active species in the system. - Increase in •OH and 1O2 concentrations with longer irradiation times, promoting antibiotic degradation. - EPR detection of •OH and 1O2 co...